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Abstract

In the context of simulating the frictional contact dynamif large systems of rigid bodies, this paper reviews a
novel method for solving large cone complementarity protddy means of a fixed-point iteration algorithm. The

method is an extension of the Gauss-Seidel and Gauss-Jaetinds with overrelaxation for symmetric convex linear

complementarity problems. Convergent under fairly stath@ssumptions, the method is implemented in a parallel
framework by using a single instruction multiple data cotagion paradigm promoted by the Compute Unified Device
Architecture library for graphical processing unit pragiraing. The framework supports the simulation of problems
with more than 1 million bodies in contact. Simulation thiesbmes a viable tool for investigating the dynamics of
complex systems such as ground vehicles running on sandigg@emposites, and granular material flow.
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I ntroduction

Approximating through numerical simulation the time evmn of a multibody system in the presence of friction
and contact/impact phenomena continues to be a challetagikg For instance, results reported in [1] indicate that
the most widely used commercial software package for madijtdynamics simulation has significant difficulties in
handling a simple problem such as a collection of ballsrfglin a box, whenever the number of balls becomes larger
than 50; in fact, the problem becomes practically intradetathen the number of bodies becomes larger than 100.
Presented here is an algorithm that can robustly and effigiapproximate the dynamics oifgid bodies undergoing
frictional contact [2]. Posing challenges of its own, theeafdeformabldrictional contact is extensively discussed
in [3, 4] and falls outside the scope of this work.

Two approaches are most often considered when simulatexgythamics of a multibody system with frictional
contact. First is the class of so-called penalty methodgrevit is assumed that every time two rigid bodies come in
frictional contact, the interaction can be represented bgllgction of stiff springs along with damping elementsttha
act at the interface of the two bodies [5, 6, 7, 8]. Implentanthese regularization approaches requires little effort
beyond that usually associated with developing a multitthahamics simulation code. Furthermore, this methodology
can easily accommodate complex frictional contact meamasiias it allows for a large number of “tuning” parameters
that, in general, can be adjusted to control the dynamickseofrictional contact interaction. What has prevented the
widespread use of this solution is the small step-size athvtiie numerical integration formula, because of stability
limitations, is able to advance the simulation, a drawbatated to the stiff spring elements artificially included in
the model. Most of the time, this step-size limitation is starbalanced by the use of implicit integration formulas,
a proposition that typically comes at a price as it requihesdolution of a discretization nonlinear system at each
integration time-step. This in turn leads to a heavy comral burden for scenarios with a large number of active
frictional contact events.

A second approach, and the one pursued in this work, relienatifferent mathematical framework capable of
handling applications with hundreds of thousands of foitéil contact events. The algorithms in this class draw on
time-stepping procedures that produce weak solutionseoflifierential variational inequality (DVI) that describe
the time evolution of rigid bodies with collision, contaatd friction. The DVI as a problem formulation was recently

introduced in full generality and classified by differehiralex [9], though earlier numerical approaches based oh DV



formulations do exist [10, 11, 12]. Recent work on time-piag schemes has included both acceleration-force linear
complementarity problem (LCP) approaches [13, 14, 15] agldcity-impulse LCP-based time-stepping methods
[16, 17, 18, 19]. The LCPs, obtained as a result of the intttidn of inequalities in time-stepping schemes for DVI,
coupled with a polyhedral approximation of the friction epmust be solved at each time step in order to determine the
system state configuration as well as the Lagrange multipdissociated with the frictional contact problem [11, 16].
If the simulation entails a large number of contacts andifigidies, as is the case of part feeders, packaging machines,
and granular flows, the computational burden of classicd k@lvers can become significant. Indeed, a well-known
class of numerical solutions for LCPs is basedsonplex methodsalso known aglirect or pivoting methods [20];
however, these methods may exhibit exponential worst-caggplexity [21]. They may be impractical even for
problems involving as little as a few hundred bodies whectifn is present [22, 23]. Further complicating the
numerical solution, since the three-dimensional Coulorigtidn case leads to a nonlinear complementarity problem
(NCP), the use of a polyhedral approximation to morph the M@®an LCP introduces artificial anisotropy, which
affects friction because friction cones become facetadidn pyramids [16, 15, 17]. In fact, this discrete and finite
approximation of friction cones is one of the reasons foldinge dimension of the problem that needs to be solved in
multibody dynamics with frictional contact.

In order to circumvent the limitations imposed by the usela$sical LCP solvers and the limited accuracy as-
sociated with polyhedral approximations of the frictiomegpa parallel fixed-point iteration method with projection
on a convex set is proposed, which can directly solve large complementarity problems with low computational
overhead. The method is based on a time-stepping formaoltigt solves at every step a cone constrained optimiza-
tion problem [24]. The time-stepping scheme has been pravednverge in a measure differential inclusion sense
to the solution of the original continuous-time DVI. For theposed approach, about 80% of the computational ef-
fort in simulating frictional contact dynamics is spentog the cone complementarity problem (CCP). The goal of
this work is to solve the CCP in parallel by using commoditgthperformance computing hardware. Specifically, a
methodology is proposed that hinges on the use of paraliepatational resources available on NVIDIAs graphical
processing unit (GPU) cards, which can currently handl@22 Jive computational threads simultaneously on the
GeForce 8800 series. Tapping into this massively paradleiputational resource has been facilitated by NVIDIAs

sharing of a well-integrated application programmingiifatee supported by the Compute Unified Device Architecture



(CUDA) library [25].

Formulation of the Multibody Dynamicswith Frictional Contact Problem

The equations that govern the time evolution of a multibogstean can be expressed in the form (see, for instance,

[26])
q = L(qv
1)
Mv = f4(t,q,v),
whereq = [r{,e{,...,rgb,egb]T € RS are generalized positions, = [tlT,wlT,...,tfb,@,fb]T € R are

generalized velocities, and, represents the number of bodies in the system. The misfriz the generalized mass
matrix, andf4 (¢, q, v) represents the vector of generalized applied forces. Theertion used here is that any
symbol in bold represents a vector or matrix quantity, andaerbar represents a vector quantity represented in the
local, body-fixed reference frame associated with a bodyishaferred from the context.

The formulation of the equations of motion draws on the dedabsolute, or Cartesian, representation of the
attitude of each rigid body in the system. For each bfdis orientation is described by a set of three Euler angles,
¢; € R3, following the 3-1-3 local rotation sequence (see, fordansg, [26]). The rate at which each body changes
its orientation is captured by the local angular velocitye R3. The location of each body is uniquely determined
by a position vector; = [z;,v;, 2;]7 that specifies where the body-fixed centroidal referencedris located. The
translational velocity of the body is simply;, where an overdot represents time differentiation. Wits get of
generalized coordinates, the mass malwixremains constant and diagonal between any realigning ofig-fired
centroidal reference frame, which can potentially be eygalido avoid Euler angles singularities. Also note thatein
for each body; there is a locally nonsingular matrB(¢;) such thato; = B(e;)é;, the operatolL(q) that relates
the time derivative of the level-zero generalized coorttindo the level-one generalized coordinates is generatly n
the identity matrix. Note that no bilateral constraints present in the current formulation. This case is discussed
in [27, 2], and a paper presenting a parallel methodologyfergeneral case of bilateral and unilateral constraints is
forthcoming.

Two rigid bodies should not penetrate, and, if they are int&cin there should be friction acting at the interface.



In order to enforce the nonpenetration constraint, a gagtiom®(q) € R is assumed to exist and satisfy

> 0 if the bodies are separated,
®(q) =4¢ =0 ifthe bodies touch each other, 2
< 0 ifthe bodies are interpenetrating.

For such a function, the nonpenetration constraint becabigs > 0. An example of such a mapping is the signed
distance function [28], which, when the bodies are smoothcamvex, is differentiable at least up to some value of the
interpenetration [29]. For most cases, even simple onediimg the relative position of two spheres, a differenigab
signed distance function cannot be defined for certain cordtgpnsy. The fact tha(q) can be differentiably defined
only on a neighborhood of the s@{q) > 0 can be accommodated at the cost of making the analysis stibfi{a
more involved [30]. This approach will not be used here. Iditdn, for piecewise smooth bodies, the signed distance
function, which is usually the first choice of a gap functimmnonsmooth even when the bodies are not penetrating
each other [31]. For polyhedral bodies, this difficulty carcircumvented by writing the gap function as the maximum
between basic contact configurations gap functions. Iretdimmensions, such configurations are corner-on-face and
nonparallel edge-on-edge. The nonpenetration consttrambe handled, in the context of the time-stepping scheme
(6-9), by the appropriate definition of the active getio include not only active contacts, but also active basitact
configuration gap functions [31]. In the end, for sufficigrgimall penetration, we can use, without loss of generality,
a differentiability of geometrical constraint data assuiopt that any contact is described by a gap functidf)
that is twice continuously differentiable. For an overwhigg majority of applications, when one deals with convex
geometries and with suitably small numerical integrati@pssizes, this assumption is easily verified.

The friction model used here is the Coulomb model, which se@dfrictional conic constraints regarded as an
extension of complementarity models discussed in [16, £ The configuration of the systerpis such that a contact
1 is active, that is®,(q) = 0, then a normal force and a tangential force are going to aeaeh of the two bodies at
the contact point. Denoting and B the two bodies in contact, l&i; be the normal at the contact pointing toward the
exterior of the first body, that is, body. Let u; andw; be two vectors in the contact plane such thatu;, w; € R?
are mutually orthonormal vectors. Although they typicalpend ory, this dependency is not explicitly indicated, in
order to keep the notation simple.

The frictional contact force is impressed on the system bgmaef multipliersy; , > 0, 7; .., andy; ,,, which lead



to the normal component of the forBe x = 7; ,,n; and the tangential component of the fokser = 7, , w; +7;,.,W;.

The Coulomb model consists of the following constraints:

Wi 2 AVt Viw o+ Vil (Mﬁz‘,n VA +%2,w) =0,

(Fir,vir) = —[|Firll [|virl|
wherev; 7 is the relative tangential velocity at contactThe magnitude of the friction force depends on the friction
coefficienty; € R™, which typically has a value betwe®nand1 for most materials, and is instrumental in linking
the magnitude of the tangential and normal forces througinatitutive type equatidn

The first part of the constraint can be restated as
F,=F,n +F;r =7 n0; + 7, uWi +i,0W; € C, 3

whereC is a cone in three dimensions, whose sloptris™! ;. Defining by( , ) the inner product of two vectors,
the constraintF, r,v; r) = —||F. || ||vi || requires that the tangential force be opposite to the tarajeelocity.
This results in the friction force being dissipative. Intfean equivalent convenient way of expressing this condtrai
is by using the maximum dissipation princiglé .., 7 ») = argmin VZT (Fi,wi + 7i,0w;) [32, 12]. For
VA2 A2 0 S1iFim
this minimization problem, it is relatively straightforwhto establish a connection between the first-order negessa
KKT conditions [33] and the Coulomb model above. Effectyyéhe condition in this equation states that the friction
force is such that, given a tangential velocity and a normald, the power dissipated is maximized.

The contribution of the frictional contact forces in the atjons of motion, Eq. (1), is through a set of generalized
forces associated with each active contact in the modeledBas Newton’s third law, each body experiences a force
of the same magnitude but opposite direction at the poinbofact. Therefore, the virtual work associated with the
frictional contact force; between bodiesl and B becomesW; = 5rZAFi — 5rZBFi. As illustrated in Fig. (1),
r; 4 = r; + A 45; ; gives the position, expressed in the global inertial refeesframe, of the contact poif} 4 on

body A, anddr; 4 = dra + A 467 aS; 4 = ora — A 4S; 40T 4 represents a virtual displacement of badlywhich

1Though the original Coulomb model distinguishes betweaticgts and kineticy, friction coefficients, where usually the kinetic coeffidiés
slightly lower than its static counterpart, in this work batre considered to have the same valud@he difference is not relevant for the discussion;
it suffices to say that to correct this approach would require to adjust the friction coefficient adaptively during #imulation depending on the

slipping speed, so as to express complex nonlinearitigsais a function of speed.
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Figure 1: Contact active between two bodigsk € {1,2,...,np}

is due to a virtual translational displacement of the bodyt&eof massdr 4, and a virtual rotation7 4, expressed in
the local bodyA reference frame. Similar quantities are defined in conjonatith body B. Note that the operator
~acting on a vectoh = [hy, ho, hs]” produces a skew symmetric matiix= H e R3*3 with H(1,2) = —ha,

H(1,3) = ho, andH(2,3) = —hy. From Eq. (3),

Wi = (6r + 6748, aAL) (Vinmi + Fiuti + Vi wWi)
— (orF + 075" 8 BAL) Finni + Fiu i + Fiw W)
= 5q" D} Finni + 3w +Yi,0Wi)
= 597 (Fi;n Din + Yiu Diw + Viow Disw),

where, withI3 the3 x 3 identity matrix, the projection matriD; € R®"*3 is defined for contactas

D:T =10 ... I3 (gl"AA?;)T 0o ... 0 -—-I3 —(§i7BA£)T ... 0 |>

and Di,n = D:Ili, D@“ = Dfui, and Di,w = DrW7
These three vectors can be grouped in amdix= [D; ,,, D; ., D; ] € R®*3, DenotingA,; , = [n;, u;, w;]

theR3*3 matrix of the local coordinates of thigh contact, one can expre$3; also as

Di=|0 ... AT AT A5 0 ... 0 AT —AT ApSp ... 0| (4)



Note that the velocity at the point of contact can also be esged in terms oD, , and D, ,,. To this end, the
velocity in local contact coordinates can be expressedf@s: vT D;, and therefore the power dissipated can be
equivalently expressed &3 (3i,uWi + 3i,wW:) = V! Di (Yi Wi +YiwWi) = V7 (Fiu Diw + Yijw Diw)-

When one revisits Eq. (1) and assumes a sei attive constraints at timg a more specific expression can
be provided for the differential equations governing tmeetievolution of the multibody system by singling out the
contribution of the frictional contact force. Drawing oretiCoulomb model discussed, the following differential

variational inequality is associated with the time evalntof the multibody system [34]:

q = Lqyv
p
Mv = f (t, q, V) + Z (:Y\qm Dz’m, + ai,u Di,u + ai,w Di,w)
i=1
®)
1<i<p : %n.>0 L &i(q) >0, and
(ai,u,; Wi,w) = argmin VT (ai,u, Di,u + Wi,w Di,w) .

wi¥in >\ Fiu)2+Fi,w)?

Here, and in the rest of this work we use the symbal v to denote the fact that”v = 0. The Coulomb model
used in this work is the predominant model used in the engimgéterature to describe dry friction. Unfortunately,
the model may be inconsistent: there exist configurationsvfiich the model does not have a solution [13, 19].
This situation has led to the need to explore weaker forrmratwhere the forces are measures and Newton’s law is
satisfied in a measure differential inclusion sense [19jal been shown that solutions in that sense do exist and can
be found by time-stepping schemes [35]. Note that, for the tyf application targeted — pebble-bed nuclear reactor
simulation, granular flow dynamics, etc., — all collisiotat appear during the simulation can be assumed of the

inelastic type.



Proposed Solution

Starting from a time-stepf?) with positionq® and velocityv("), the solution is found at the new time-stép™) =

t® + h as the solution of the following optimization problem withulibrium constraints:

M(v(l“) —vh = hf(t(l)’ q¥, V(l))

+ Z (fY?,n Di,n + Yi,u Di,u + Vi,w Di,w) ) (6)
i€ A(q®),5)
1 )

ieAqV,0) : 0< E@i(q(l)) + D] v 1 4% >0, and (7)
(’Vi,uv ’Yi,w) = argmin VT ('Vi,u Di,u + Yi,w Di,w) ’ (8)

1iYin >N/ V2
q = q® 4 aL(qW)viHD, 9)

Here, for a conveniently chosen small valueaf 0,
A(q,0) ={ilie{1,2,...,p}, Pi(q) <4},

~s represents the constraint impulse of a contact constthat,s,y, = h7,, for s = n, u, w. The%@i(q(”) term
achieves constraint stabilization; its effect is discdsige[30]. As the step sizé — 0, the scheme converges to
the solution of a measure differential inclusion [24]. Nuioal solutions for the case when the nonlinear frictional
contact constraint is approximated by a piecewise lineae@an be found by Lemke’s algorithm [17]. Nonetheless,
as the number of constraints in the problem increases, ti@utational cost of Lemke’s method increases far faster
than linearly with the size of the problem [22]. Alternatiyghe problem is cast as a monotone optimization problem
by introducing a relaxation over the complementarity caists; that is, the time-stepping scheme is modified by

replacing Eq. (7) with

i€ AlqV,0):  0< +d;(qV) + DI, v+ .

—pin/ (VT D )2 + (vI Dy )2 Ly, 2 0.
As h — 0, the solution of the modified time-stepping scheme will @agh the solution of the same measure dif-

ferential inclusion as the original scheme [24]. It can beniediately verified that, for one step, the solution of the

scheme using (10) approaches the one of the scheme usind€mymwy; .1/ (vZ D; )2 + (VI D; )2 < 1 [22].
This assumption is satisfied both in the regime in which peliigld nuclear reactors operate [36] and for granular flow

applications, two classes of applications targeted by thpgsed approach. Generally, the above assumption will be

10



satisfied whenever there is little friction between the twdiks in contact (low:) or when the relative velocity at the
contact point is small.

But the sequence produced by the scheme using the relaXatpapproaches the one produced by the scheme
using (7) in far more general circumstances. The first andséoend terms are common to both (7) and (10) and

originate in the linearization of the nonpenetration caaist. The first term,% is the one that achieves constraint

stabilization [30]. The relaxation term js+/(v7 D; )2 + (vT D; ,,)2. But, interestingly, the combination between
this term and%: has the effect of creating a contact boundary layer betweebodies, of width equal tb||v; r||,
which compensates for the relaxation term. Provided thatithe step is small compared to the characteristic time
scale of the tangential velocity, the dynamics of the redsse@heme will approach the dynamics of the original scheme,
the one using (7). A related observation is at the heart obtherwise technical convergence result in [24].

The KKT optimality conditions for the equilibrium constraiin Eq. (8) state that, for any A(q(l),d), there

exists a Lagrange multiplieY; such that

_ T T
AiYiw = —V Diw, A%iw =V Djw,

AN >0 L m%,n—mzo'

Iffor i € A(qW, ), ¢ = [Yins Vi Yiwl, andg! = [1@i(q) + D, v+, DT v*D DT v(+1], then

(11)

drawing on Egs. (10) and (11), one can show #fat; = 0, and thugz; L c;. If one defines the cones

A = {g =1[91.92,93]" €R® | g1 > Mi\/gng%}7

C = {C = [e1,c2,c3)T € R® | pier > \/W}
thenA; is the negative polar cone 6f; that is,g € A; andc € C; implies thatg” c > 0. Here,C°, the polar cone
of a given cone&” C R™, is defined a&’° = {x € R™|(x,y) <0, Yy € C}. Then based on Egs. (8) and (10) the

following set of cone complementarity constraints holds:
—g, €C’ Le, e€C, Vie AlqW,0). (12)

In what follows, the focus shifts back to reformulating thgtimization problem with equilibrium constraints
of Egs. (6) through (9) to account for the above cone compheanity constraints. To this end, the notatigh=
Mv® +hf(t® q®, vD) is introduced. Then, Eq. (6) is reformulatedds, ! 1) = Q + D, where withn 4 being

the cardinality ofA(¢(", ), D = [D;... D,,,] € R6m>X3na oy = [T 4T 1T € R34, and, fori € A(q®, ),

11



D; = [Diyn Diyw Diywl € R andy! = [vi, viwu viw]. Next, the vectob € R34 is defined ad? =
[+®1(qY) 00...+®,,(q") 0 0]. Here, for an arbitrary vectds € R3"4, the notatiorh;, 1 < i < n, is used
to represent the entries in roMéi — 1) 4+ 1, 3(i — 1) + 2, 34, that is, the entries associated with contadtinally,
with the notationN = D”M~!D, andd = b + D”M~'Q, the configuration of the multibody systemtét?) is

obtained as the solution of the following:

~(Ny*4d) e e Lyt ec, 1<i<ng, (13)
MyvH) = Q4 Dy, 14
gt = g —|—hL(q(l))V(l+1)- (15)

The frictional contact forces(‘*1) are obtained by solving the cone complementarity probleBgs. (13) and (14),
where, at each iteration, the velocity is evaluatest@s!) = M—! (Q + DW“)). The attitude of each body in the
system is obtained by using Eg. (15). Note tNais positive semidefinite, whild1 is diagonal, constant, and positive
definite. Equation (13) in fact represents the optimalitpditon of the following cone complementarity problem
(CCP):

min f(y) = %A/TN’y—i—dT’y st. v eC, V1<i<ny,
whose solution is found by using an iterative algorithm tisarting with an arbitrarily chosen(®), computes the

iterationr + 1,7 > 0,

’7{4_1 = p Hci |:’er — W (N’y + d)z + Z'mED(i,T) K;,m (A/:nJrl - A/:n):| (16)

+ (T=p)f,

wheren; will be defined in Algorithm 1 below) < p < 1, andw > 0 are two parameters, and, for eachK?
is a coefficient matrix that indicates how the frictional tamt force associated with contaet gets reflected in the
computation of the frictional contact force associatechvabntacti. Here D(i,r) represents the set of contacts
considered when updating the frictional contact forces@ased with contact. Note that for a Gauss-Jacobi-type
iterationD(i,r) = @ and for a Gauss-Seidel type iteratif{i,r) = {1,2,...,% — 1}, but other update strategies,
which might depend on the iteration indexcan and will be pursued. Finally, the operdily; is the cone projection
operator; see, for instance, [27].

The iterative scheme in Eq. (16) was proved to converge umildrassumptions that can be met by a suitable

choice of relaxation parameter[2]. Therein, it was also pointed out that a Gauss-Seidehtgpdequence in the

12



iterative process led to a robust algorithm. Although coimet for the convergence analysis, Eq. (16) is not the form
that is considered for software implementation. Rathemaar loop iteration algorithm, that also updates the speed

v+ is provided in the following pseudocode, Algorithm 1:

Algorithm 1: Inner Iteration Loop
1. Forl <i < ny4, evaluate), = 3/Tracd DI M1 D,).
2. If warm start with initial guess*, then sety® = v*, otherwisey® = 0.
3. Initialize speedsy(*+1) = "4 M~! DA% + M~'Q.

4. Fori =1,...n4, perform the updates:
AP = 47— wpi (DT VD 4+ by);

(2

r relim ro.
7 =p e, (%’7 ) + =P

Ay tt =it =97

viFD = v+ L M1 D AN
5. Repeat step 4 by looping on the list of contacts in reverderpif symmetric updates are desired.

6. r := r + 1. Repeat from 4 until convergence, or untit> 7,4

The stopping criterion is based on the value of the velogityaie. The overall algorithm that provides an approx-
imation to the solution of Eqgs. (13) through (15) relies ogdithm 1 and requires the following steps, Algorithm

2:

Algorithm 2: Outer, Time-Stepping, L oop

1. Sett = 0, step countef = 0, provide initial values foty® andv(®.

2. Perform collision detection between bodies, obtainingpossible contact points within a distanteFor each

contacti, computeD; ,,, D; ,,, D, ,,, and residua®;(q), which also provideb,.

13



3. For each body, compute forcgig), gV, v(V) and themQ.
4. Use Algorithm 1 to solve the cone complementarity probdeh obtain unknown impulsgand velocityv (“H1).
5. Update positions usingt!) = q(® 4+ hL(q®)v(+D),

6. Increment :=t + h, [ := 1+ 1, and repeat from step 2 untit> t.,q

Note that choosing a proper valtiéor the collision envelope is not trivial. On the one hand, Vfery small or zero
value is used, contacts will enter the CCP solver only whéstibo late, and some amount of interpenetration will
be unavoidable, which in turn adversely impacts the stgolithe method. On the other hand, if too large a value is
used, the collision detection algorithm will return too mgiotential contacts that waste computational resourceés an
could occasionally create trouble with convex shapes, tiecreases the efficiency of the methodv i§ known, a
simple yet efficient heuristic is to choodeas a rough approximation of the maximum distance that canaveled

within a step-size by an arbitrary point of a moving body.

Parallel Implementation Details

The parallel implementation for the multibody dynamicstional contact problem dependends heavily on the under-
lying hardware used to run the simulation. Specifically,atgorithm proposed is well suited for running on parallel
platforms that support the single instruction multipleadé$IMD) computational paradigm, which is ideally suited
for handling problems with contacts in excess of hundredbadisand. NVIDIAs GeForce 80 family of GPUs has
been adopted as the implementation platform. Priced at $é6@ard, the GeForce 8800 GTX has been clocked at
320 GFlop, about seven times faster than an Intel Core 2 Duaimg at 3 GHz, and this gap is bound to grow in the
immediate futuré A description of the hardware behind the GeForce 8800 GTi ssed is beyond the scope of this
paper. It suffices to indicate that for the frictional cottamblem discussed here, contacts are processed by each of
the 16 streaming multiprocessors in warps of 16 contactsipeaming multiprocessor. As far as memory allocation

is concerned, each streaming multiprocessor has 8,19 eegthat each can hold a float or an integer, and each has

2Note that through a new product line called Larrabee, Istéitegrating the GPU and CPU on the same chip and expectegpor in early

2010 the same parallel computation model promoted by NV|DiAly with larger shared memory and L1 cache.
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16 KB of shared-memory that can be shared by all live threaggaated with the respective streaming multiproces-
sor. In this context, the maximum number of live threads i86& much larger than the batch of 16 threads that are
executed at each time, since some of threads are active tgidpahile waiting for global memory fetches, a strategy
that hides the memory latency and improves the overall effi. The recommended strategy for GPU computing on
GeForce 8800 GTX is to try to maximize the number of paralietads active at any given time, which in an ideal
situation would be at 12,288 threads. Since register angdhraemory resources are fixed, however, the more threads
active, the less the resources per thread. In the end, anaptoint is reached where, while the number of threads per
streaming processor is still large, the memory allocateth thread is enough to allow it to run a batch of commands
associated with Algorithm 1. In the current parallel impkntation, Algorithm 1 runs with 6,144 active threads at any
given time; in other words, the GPU is working with 6,144 @art$ at each time. The number of active threads can be
further increased but at the price of an increased numbeobagmemory accesses, where “global” here represents
the 768 MB GDDR3 on-chip GPU memory. While global memory liet are still fast because of low latency and
high memory bandwidth (86.4 GB/sec), they are still two osd# magnitude slower than register or shared-memory
access and should be avoided whenever possible.

In the context of this work, the most relevant consequencesofg a parallel execution approach is that this
execution model can lead to a random velocity update segudnasequentiakxecution mode, the loop over the
active contact set in Algorithm 1 is carried out in an ordddghion. If symmetric updates are desired, then the
order is reversed, but it is still predefined and determmidVhen implementing parallel version of Algorithm 1,
two approaches can be followed. The first falls back on a Gaassbi approach and, referring back to Eq. (16),
corresponds t@(i,7) = . Numerical experiments suggest that the convergence estieealses and, for certain
models, leads to a large number of iteratiengr even lack of convergence. The second approach investigmat
this work allows for a random update sequence, to the extentin generaD(i,r) # D(i,p), for r # p. In this
context, for the Gauss-Seidel there is no dependency inrigo 1 of D(i,r) = {1,2,...,¢ — 1} onr, and in fact
each iteration follows the same update sequence. Enfoachigilar update sequence in a parallel execution scenario
would unacceptably compromise performance, as this haglymn a system of semaphores similar to thg ex
support in the POSIX standard threading library API, whicHact is not supported by CUDA library support [25].

Note that there is a remote chance that during some iterat@mcertain update produced by contaatould fail
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altogether because of a race condition and lackdfex-type support. This situation is not expected to impact the
convergence of the algorithm, however, particularly fogé&frictional contact problems with hundreds of thousands
of contacts, where the probability of 2 out of 256 contactbéoassociated with the same body and try to update
its velocity at the same time is very small, but not zero. Na$® that the 256 value corresponds on GeForce 8800
GTX to the number of streaming multiprocessors (16), eaohgssing simultaneously a warp of 16 threads (frictional

contacts).

Data Structures

At each simulation step, the CPU, that is, the “host” , feeata éhto the GPU memory, launches one or niamels
(functions to be performed simultaneously on many par@fU threads), and gathers the results of the computations
by copying select portions of the GPU memory back into the Régvi. Special care should be paid to minimize the
memory overhead caused by repeated transfers of largetdattuses. Moreover, data structures should be organized
to exploit fast GPU coalesced memory access to fetch datalfparallel threads in a warp. Provided that bytes are
contiguous and that the" thread accesses th& element in the data structure, up to 512 bytes can be fetohauk
operation by a warp of threads. Failing to perform coalesnethory access may slow the kernel significantly. For
the algorithm developed, the data structure for the costaas been mapped into columns of four floats, as shown in
Fig. 2.

There is no need to store the entik® matrix for thei!" contact because it has zero entries for most of its part,
except for the two 12x3 blocks corresponding to the cootdmaf the two bodies in contact. Hence, the product

D7v{+1) in the fourth step of Algorithm 1 can be performed as

D/v*) =DT i + D], wa+D!, i +D],  ws (17)

VA
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with the adoption of the following 3x3 matrices

D, =-Al, (18a)
D/, = Al,A4Si (18b)
D, =Al, (18c)
D, = -Al,Apsip (18d)

(18e)

Similarly, the update (‘+1) .= v+ 1 M~ D; A7 can be computed explicitly as the following sparse update

to the speeds of two bodies only

I-,X+1) — I"X) —m Dy, Ay (19a)
wa ) = wa® +I'D, Ay (19b)
PO = Y D, A (19c)
wpth = wg® — JE;lDi,wB Afyl“'l (19d)

there is no need to store both matrices, so in each contacsttacture only a matrio”

1, VAB

SinceD?, =-DT, _,
is stored, which is then used with opposite signs for eachefwo bodies.

Figure 3 shows that for each body there is a data structurgicdmg the state (speed and position), the mass
moments of inertia and mass values, and the external agplieelF; and torqueC;. Forces and torques, if any, are
used to compute the third step of Algorithm 1. Note that toeshibe iteration, it is better to store the inverse of the
mass and inertias rather than their original values, becthes operatio™ ~! D; A~/ ™! must be performed many
times. Each contact will reference its two touching bodmesugh the two pointer®, and B, in the fourth and
seventh rows of the contact data structure.

Numerical experiments show that for high memory throughipig better to pad the data into a four-float width

structure even at the cost of wasting memory space whenaeries end up not being used. Also, the variables
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Figure 2: Grid of data structures for frictional contacsGGRU memory.

in the data structures are organized in a way that minimlxesitmber of fetch and store operations. This approach
maximizes the arithmetic intensity of the kernel code, asmmended by the CUDA development guidelines.

Another software design decision that improved the ovemtformance regarded the delegation of contact pre-
processing step to the GPU. Specifically, instead of comgulie data structures of the contacts on the host, only the
contact normals and contact points were copied into the GBony. Then, a GPU kernel computBéﬁ,AB , DZWA,
D;{“wB, 74, bin, @S shown in Figure 4. This strategy leads to faster code migth®cause the preprocessing kernel
runs in parallel on the GPU, but also because it avoids theaneaverhead that would happen if copying the contact
structures from host to GPU. Note that, andb; ., are quickly evaluated as zero values.

We note that data structures for both bodies and contactreaeged in thread blocks and that thread blocks are

arranged in thread grids.

The Parallel Algorithm

The pseudocode in Algorithm 3 outlines how Algorithm 1 anda@ithm 2 can be combined and turned into a sequence
of computational phases, for the most part executed adglde@tnels on the GPU. In terms of resource allocation, the
computation kernels followed a one-thread-per-body, @-ttmead-per-contact, philosophy, depending on the phase

of the algorithm.
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Figure 3: Grid of data structures for rigid bodies, in GPU roeyn
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Figure 4: Contact data structure, before and after the pogssing kernel.
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Algorithm 3: Complete Time Stepping, when GPU is Available.

1.

10.

(Host, seria) Perform collision detection between bodies, obtainingoossible contact points within a distance
4, as contact positions 4, s;, g on the two touching surfaces, and normajsIf warm start is used, then fetch
last reactions in contact point” (obtained in previous frame, if the contact is persistent) sety; = ~;,

otherwisey; = 0.

. (Host, serig) Copy contact and body data structures from host memory td @Emory.

. (GPU, body-parallgiForce kernel. For each body, compute forceg®, q(¥, v(), if any. Store these forces

and torques intd”; andC;. For example, apply the gravitational and gyroscopic ferce

. (GPU, contact-parall@IContact preprocessing kernel. For each contact, given contact normal and position,

compute in-place the matricd3? D7 andDT”

2, VAB' ,WA ,wB'

then compute); and the contact residud} ,, =

+®;(q). Setb; ,, andb, ,, as zero.

. (GPU, body-parallgl CCP force kernel. For each bodyj, initialize body speedsf'y“) =h m;le and

Wit = hJ710;

. (GPU, contact-parallgICCP initialization kernel. For each contaat, update initial speeds of bodiesand

B using equations 19, with the initial valuesgf This can be skipped if no warm starting. Project to friction

cones when necessary.

. (GPU, contact-parallpICCP iteration kernel. For each contaat do~?" "™ = 47 — wn; (DI v(+D 4+ by).

i

Note that D7 v(*+1) must be done with sparse data, using formula 18. Alse/dd = p Il (Aﬁ’”“m) +

K3

(1 — p)v7, by projecting multipliers onto théth friction cone. After computing\y, ™ = 47+ — 47, update

i

the speeds of the two connected boddeand B as in formulas 19.

. Repeat the previous kernel until convergence or untillmemof CCP steps reached> r;,4-

. (GPU, body-parallglTime integration kernel. For eachj body, perform time integration a}z‘le) = qg.l) +

! l
L) )vi Y

(Host, seria) Copy body data structures from GPU memory to host memorypy@ontact multipliers from

GPU memory to host memory.
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Figure 5: Frame from the simulation of a brick wall. Frictidwontact is present between the bricks in the wall and

between the bricks and ground.

Numerical Results

A set of two numerical experiments was carried out with a hemark problem to assess the performance of the
frictional contact method discussed when executed in aesd@h computational framework, and to compare the
sequential to the parallel solution approach proposedenptiper. For each numerical experiment three scenarios
were considered, differentiated by the number of brick eletst 1000, 2000, and 8000 bricks, respectively. Initial
conditions were such that the wall slowly collapsed. Figupresents a snapshot of the dynamics of the process. The
wall in the picture has a small number of bricks yet qualtlii captures the essence of the dynamics for the larger
models considered here. The friction coefficient betwe@kbrand between bricks and ground, was set to 0.6.

The simulation was carried out with a numerical integrasitap-sizér = 0.01s, which is three orders of magnitude
larger than typically required by the DEM method in [36]. Ahge timing results, since they depend on issues such as
cache management that can vastly change with different deraand optimization levels, are perhaps less relevant.

With respect to the sequential simulation results, theirsgalf the algorithm with the number of bodies is relevant.
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Bricks Sequential GPU Coprocessing

Version Version
1000 43 6
2000 87 10
8000 319 42

Table 1: Average simulation times (in s) required to capture second of the dynamics of the falling wall.

These and other results obtained for large-scale simulafimodels with frictional contact suggest that the aldonit
discussed here displays linear complexity [2]. In otherdspthe simulation time increases linearly with the number
of bodies in the model. Comparing the sequential and pasatieilation results, one can see a speedup of a factor of 7
when relying on the GPU in coprocessor mode. In spite of usiagNVIDIA GTX8800 GPU model with 128 parallel
threads, the speedup is limited to 7x because the colligtection draws on an open source package that does not yet

leverage GPU parallelism [37].

Conclusions

The paper proposes a theoretically rigorous approach talaimg multibody dynamics problems with frictional
contact. The algorithm proposed is backed by convergerstdtsefor measure differential inclusions [24] and by a
rigorous convergence analysis [2]. The methodology leyesaommaodity high-performance parallel computing on
the GPU. Preliminary results obtained with the proposedlfdralgorithm demonstrate that for very large problems
the computational bottleneck associated with the secaleaiorithm — that is, the solution of the cone complemen-
tarity problem — has been eliminated. The computation is dominated by the collision detection stage, which at
this time runs sequentially. Four issues remain to be addded-irst, a rigorous convergence analysis for the case of
random velocity updates is needed. Although preliminasylte show that this update strategy works in conjunction
with large frictional contact models, it is important to wmstand and possibly address some of the limitations associ
ated with this approach. Second, the methodology shoulcbaneled to include the case of bilateral and unilateral
constraints present in a multitude of mechanical systemetsodt is expected that the latter will positively impact

the RATTLE and SHAKE algorithms in molecular dynamics siatidn. Third, the cone complementarity problem
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approach needs to be extended to deformable multibody dgsgroblems. Fourth, a parallel collision detection
engine would allow for an entirely parallel approach to nilmatly dynamics with frictional contact that, given the re-
cent advances in commodity high-performance parallel aging hardware, opens up new fields of simulation-based
engineering in materials science, pharmaceutical ingugtanular flow dynamics. The first three open issues will
be addressed in future work; the fourth one is essentiallyadlenging computer science problem that remains to be

addressed by that community.

Acknowledgment

Financial support for the second author is provided in pafilational Science Foundation under Grant No. CMMI-
0700191. A. Tasora and D. Negrut thank the NVIDIA corponafior sponsoring their research programs in the area
of high-performance multibody dynamics simulation. M. fasicu was supported by Contract DE-AC02-06CH11357

of the U.S. Department of Energy.

References

[1] J. Madsen, N. Pechdimaljian, and D. Negrut. Penaltyuemomplementarity-based frictional contact of rigid
bodies: A CPU time comparison. Technical Report TR-200/Sd5ulation-Based Engineering Lab, University

of Wisconsin, Madison, 2007.

[2] M. Anitescu and A. Tasora. An iterative approach for ceneplementarity problems for nonsmooth dynamics.

Computational Optimization and ApplicatiqrZ008, in press.

[3] N.Kikuchiand J.T. OdenContact Problems in Elasticity: A Study of Variational Inedjties and Finite Element

Methods SIAM, Philadelphia, PA, 1998.
[4] Peter WriggersComputational Contact MechanicSpringer-Verlag, Berlin, Heidelberg, second editiorlQ&0

[5] Bruce R. Donald and Dinesh K. Pai. On the motion of compiliaconnected rigid bodies in contact: a system
for analyzing designs for assembly. Pnoceedings of the Conf. on Robotics and Automatages 1756—1762.

IEEE, 1990.

23



[6] Peng Song, P. Kraus, Vijay Kumar, and P. Dupont. Analp$isgid-body dynamic models for simulation of

systems with frictional contactdournal of Applied Mechani¢$8(1):118-128, 2001.

[7] Peng Song, Jong-Shi Pang, and Vijay Kumar. A semi-iniptime-stepping model for frictional compliant

contact problemsinternational Journal of Numerical Methods in Engineerig@(13):267-279, 2004.

[8] Jong-Shi Pang, Vijay Kumar, and Peng Song. Convergehtime-stepping method for initial and boundary-

value frictional compliant contact problemSIAM J. Numer. Anal43(5):2200-2226, 2005.

[9] Jong-Shi Pang and David Stewart. Differential varinibinequalitiesMathematical Programmind 13(2):345—

424, 2008.

[10] Jean J. Moreau. Standard inelastic shocks and the dgaashunilateral constraints. In G. Del Piero and
F. Macieri, editorsUnilateral Problems in Structural Analysipages 173—-221, New York, 1983. CISM Courses

and Lectures no. 288, Springer—Verlag.

[11] P. Lotstedt. Mechanical systems of rigid bodies subjecunilateral constraints.SIAM Journal of Applied

Mathematics42(2):281-296, 1982.

[12] M. D. P.Monteiro MarquesDifferential Inclusions in Nonsmooth Mechanical Probler8socks and Dry Fric-
tion, volume 9 ofProgress in Nonlinear Differential Equations and Their Aipations Birkhauser Verlag, Basel,

Boston, Berlin, 1993.

[13] David Baraff. Issues in computing contact forces fonfpenetrating rigid bodiesAlgorithmicg 10:292-352,

1993.

[14] Jong-Shi Pang and Jeffrey C. Trinkle. Complementdotynulations and existence of solutions of dynamic

multi-rigid-body contact problems with Coulomb frictioMath. Program, 73(2):199-226, 1996.

[15] Jeffrey Trinkle, Jong-Shi Pang, Sandra Sudarsky, arst&Lo. On dynamic multi-rigid-body contact problems

with Coulomb friction.Zeitschrift fur angewandte Mathematik und Mechafik267-279, 1997.

[16] David E. Stewart and Jeffrey C. Trinkle. An implicit tevstepping scheme for rigid-body dynamics with inelastic
collisions and Coulomb frictioninternational Journal for Numerical Methods in Engineegjr89:2673-2691,

1996.

24



[17] Mihai Anitescu and Florian A. Potra. Formulating dyrniammulti-rigid-body contact problems with friction as

solvable linear complementarity problenionlinear Dynamicsl4:231-247, 1997.

[18] Mihai Anitescu, Florian A. Potra, and David StewartniB-stepping for three-dimensional rigid-body dynamics.

Computer Methods in Applied Mechanics and Engineerdifq:183-197, 1999.

[19] David E. Stewart. Rigid-body dynamics with frictiondiimpact. SIAM Review42(1):3-39, 2000.

[20] Richard W. Cottle and George B. Dantzig. Complemenpavgt theory of mathematical programminiginear

Algebra and Its Applicationsl:103-125, 1968.

[21] David Baraff. Fast contact force computation for nomgteating rigid bodies. II€omputer Graphics (Proceed-

ings of SIGGRAPH)pages 23-34, 1994.

[22] Mihai Anitescu and Gary D. Hart. A fixed-point iterati@pproach for multibody dynamics with contact and

friction. Mathematical Programming, Series B01(1):3-32, 2004.

[23] Alessandro Tasora, E. Manconi, and M. Silvestri. Unwaumetodo del simplesso per il problema di comple-
mentarit lineare mista in sistemi multibody con vincolilatéri. In Proceedings of AIMETA Q3-irenze, Italy,

2005.

[24] Mihai Anitescu. Optimization-based simulation of somooth rigid multibody dynamicsMath. Program,

105(1):113-143, 2006.

[25] NVIDIA. CUDA Programming Guide. Available online attpt//developer.download.nvidia.com/compute/cudd/1

NVIDIA _CUDA_ProgrammingGuide 1.1.pdf, 2007.

[26] A. A. ShabanaDynamics of Multibody SystemSambridge University Press, third edition, 2005.

[27] A. Tasora. High performance complementarity solvenmfon-smooth dynamics. In C. L. Bottasso, P. Masarati,

and L. Trainelli, editorsProceedings of the ECCOMAS Multibody Dynamics Conferdvdano, Italy, 2007.

[28] Young J. Kim, Ming C. Lin, and Dinesh Manocha. Deep: Daphce expansion for estimating penetration depth
between convex polytopes. Rroceedings of the 2002 International Conference on Robathd Automation

volume 1, pages 921-926. Institute for Electrical and Etetits Engineering, 2002.

25



[29] Mihai Anitescu, James F. Cremer, and Florian A. Potiankulating 3d contact dynamics problenMechanics

of Structures and Maching24(4):405-437, 1996.

[30] Mihai Anitescu and Gary D. Hart. A constraint-stab@iztime-stepping approach for rigid multibody dynamics
with joints, contact and friction.International Journal for Numerical Methods in Engineagjr60(14):2335—

2371, 2004.

[31] G.D. Hart. A constraint-stabilized time-stepping approach for pigise smooth multibody dynamicBh.d in

mathematics, University of Pittsburgh, 2007.

[32] J. J. Moreau. Unilateral contact and dry friction in finfreedom dynamics. In J. J. Moreau and P. D. Pana-

giotopoulos, editordNonsmooth Mechanics and Applicatippages 1-82, Berlin, 1988. Springer-Verlag.

[33] Dimitri P BertsekasNonlinear ProgrammingAthena Scientific, Belmont, MA, 1995.

[34] J. S. Pang and D. E. Stewart. Differential variatiomalqualities Mathematical ProgramminglL13:1-80, 2008.

[35] David E. Stewart. Convergence of a time-stepping sehfmrigid body dynamics and resolution of Painleve’s

problems.Archive Rational Mechanics and Analysi15(3):215-260, 1998.

[36] C. H. Rycroft, G. S. Grest, J. W. Landry, and M. Z. BazafAnhalysis of granular flow in a pebble-bed nuclear

reactor.Physical Review E74, 021306, 2006.

[37] Physics  Simulation  Forum. Bullet Physics  Library. Amhle online at

http://mww.bulletphysics.com/Bullet/wordpress/bul2008.

26



27

The submitted manuscript has been created by UChicag
gonne, LLC, Operator of Argonne National Laboratory ("4
gonne”). Argonne, a U.S. Department of Energy Office
Science laboratory, is operated under Contract No. DE-A
06CH11357. The U.S. Government retains for itself, and
ers acting on its behalf, a paid-up, nonexclusive, irrette
worldwide license in said article to reproduce, preparévele

tive works, distribute copies to the public, and perform |

D Ar-

r-

of

02

pth-

a

ub

licly and display publicly, by or on behalf of the Governme

nt




